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Atrous convolution
• How it works?

– Blows up the kernel
– Filling up the holes with zeros

• Atrous means very dark (like 
the wholes between the 
values)

• Properties
– Not doing downsampling
– Not increasing computational 

load
– But reaches larger 

neighborhood
– Combines information from 

larger neighborhood
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rate=1 rate=2 rate=3

Normal 
convolution

Atrous (dilated)
convolution



Going deep
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Atrous convolution goes deeper without further reducing resolution

Normal convolution goes deeper with reducing resolution



Filter size considerations

• Small field-of-view →  accurate localization

• Large field-of-view →  context assimilation 

• Effective filter size increases (enlarge the field-of-view of filter)

𝑛𝑜: 𝑘 × 𝑘 → 𝑛𝑎: 𝑘 + 𝑘 − 1 𝑟 − 1 × 𝑘 + 𝑘 − 1 𝑟 − 1

𝑛𝑜 : original kernel size

𝑛𝑎 : original kernel size

r: rate

• However, we take into account only the non-zero filter values:
• Number of filter parameters is the same

• Number of operations per position is the same
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6Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 
CRFs." arXiv preprint arXiv:1606.00915 (2016).

Standard 
convolution

Atrous
convolution

Padded 
filter

Original filter

Visualizing atrous convolution

https://arxiv.org/pdf/1606.00915v1.pdf


Semantic segmentation 
CNN arrangements  
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Fully conv-net  

Fully conv-net with skip

Conv-net with 
Multi-scale 
atrous
convolutions

• How to solve reduced resolution? 
• Do not downsample !!! 

• Convolution on large images ⥤ Small FOV Enlarge kernel 
• Size O(n2 ) more parameters ⥤ getting close to fully
• Connected layer, slow training, overfitting

• Atrous Convolution. 
• Large FOV with little parameters   Kill two birds with one 

stone!



Sub-pixel upsampling
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Sub-pixel upsampling
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• Technique for combining multiple low resolution layers to a high resolution 
layer

• Avoids introducing zeros pixels or duplicated pixels
• Avoids checkerboard pattern with transpose convolution

2x2 superpixel
to receive one
pixel from each
Feature map 

3x3 superpixel



Sub-pixel upsampling

2018-11-19 10

• Each feature map is holding information for a sub-pixel position
• During the training, each feature map learns how to calculate the 

subpixels



Unsupervised learning
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Typical Machine Learning Types

No two machine learning tasks are identical, but still there are common 

prototypes:

• Supervised Learning
– Learning from labeled examples (for which the answer is known)

• Unsupervised Learning
– Learning from unlabeled examples (for which the answer is unknown)

• Semi-supervised Learning
– Learning from both labeled and unlabeled examples 

• Reinforcement Learning
– Learning by trial and feedback, like the “child learning” example
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Supervised vs Unsupervised learning

• Supervised learning

– We have prior knowledge 
of the desired output
• Always have data set with 

ground truth (like image 
data sets with labels)

– Typical tasks
• Classification

• Regression 
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• Unsupervised learning
– No prior knowledge of 

the desired output
• Received radio signals from 

deep space

– Typical tasks
• Clustering

• Representation learning

• Density estimation 

We wish to learn the inherent 
structure of (patterns in) our data.
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Use cases for unsupervised learning

• Exploratory analysis of a large data set

– Clustering by data similarity

– Enables verifying individual hypothesizes after analyzing the clustered data

• Dimensionality reduction

– Represents data with less columns

– Allows to present data with fewer features

– Selects the relevant features

– Enables less power consuming data processing, and/or human analysis
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Curse of dimensionality
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• What is it?
– A name for various problems that arise when analyzing data in high 

dimensional space.
– Dimensions = independent features in ML

• Input vector size (number of pixels in an imaga)

– Occurs when d (# dimensions) is large in relation to n (number of 
samples). 

• Real life examples:
– Genomics

• We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.



So what is this curse?

• Sparse data:
– When the dimensionality d increases, the volume of the space increases 

so fast that the available data becomes sparse, i.e. a few points in a large 
space

– Many features are not balanced, or are ‘rarely occur’ – sparse features

• Noisy data: More features can lead to increased noise  it is harder to find 
the true signal

• Less clusters: Neighborhoods with fixed k points are less concentrated as d 
increases.

• Complex features: High dimensional functions tend to have more complex 
features than low-dimensional functions, and hence harder to estimate
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Data becomes sparse as dimensions increase
• A sample that maps 10% of the 1x1 squares in 2D represent only 1% 

of the 1x1x1 cubes in 3D

• There is an exponential increase in the search-space
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Sparse example 
• Suppose we want to discriminate between 

samples from two categories

• This one feature is not discriminative. We cannot 
classify well, thus we decide to add a second feature.

• To maintain the sample density  of 9 samples per unit length (as above) 
how many samples do we need?

• We need 81 samples to maintain the same density as in 1D

• In d dimension we need 9d samples!

– Otherwise, the data becomes more sparse
2018-11-19 18

72 new samples needed



Curse of dim - Running complexity

• Many data points (labeled measurements) are needed

• Complexity (running time) increase with dimension d

• A lot of methods have at least O(n*d2) complexity, where n is 
the number of samples

• As d becomes large, this complexity becomes very costly.
– Compute = $
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Curse of dim - Some mathematical 
(weird) effects

• Ratio between the volume of a sphere and a cube for d=3: 

• When d tends to infinity the volume of the sphere (this ratio) tends to zero

• Most of the data is in the corner of the cube

– Thus, Euclidian distance becomes meaningless, most two points are “far” from 
each others

• Very problematic for methods such as  k-NN classification or k-means 
clustering because most of the neighbors are equidistant
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(
𝟒
𝟑)𝝅𝒓

𝟑

(𝟐𝒓)𝟑
≈
𝟒𝒓𝟑

𝟖𝒓𝟑
≈ 𝟎. 𝟓

d 3 5 10 20 30 50

ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28



The nearest neighbor problem in a sphere

• Assume randomly distributed points in a sphere with a unit diameter

• The median of the nearest neighbors is l

• As dimension tends to infinity 

– The median of the nearest neighbors 
converges to 1
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“The Curse of Dimensionality” by Raúl Rojas
https://www.inf.fu-berlin.de/inst/ag-
ki/rojas_home/documents/tutorials/dimensionality.pdf 

l



How to calculate dimensionality?

x1 x2 x3 x4

d1 1 2 1 1
d2 2 4 0.5 1
d3 3 6 17 1

• How many dimensions does the data intrinsically have here? (How many 
independent coordinates?)

– Two!
• x1 = ½ * x2 (no additional information, not independent)
• x4 is constant (carries no information at all!)
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How to avoid the curse?

• Reduce dimensions
– Feature selection - Choose only a subset of features
– Use algorithms that transform the data into a lower dimensional space (example – PCA, t-SNE)

*Both methods often result in information loss

• Less is More
– In many cases the information that is lost by discarding variables is made up for by a more 

accurate mapping/sampling in the lower-dimensional space

2018-11-19 23

Classifier 
performance

# of variables



Principal component analysis

(PCA)
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Dimensionality reduction goals

• Improve ML performance

• Compress data

• Visualize data (you can’t visualize >3 dimensions)

• Generate new complex features
– Loosing the meaning of a feature

– Combining temperature, sound and current to one feature will be meaningless for 
human
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Example – reducing data from 2d to 1d

• X1 and x2 are pretty redundant. We 
can reduce them to 1d along the 
green line

• This is done by projecting the points 
to the line (some information is lost, 
but not much)
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• Despite having  3D data most of it lies close to a plane

• If we were to project the data onto a plane we would have a more 
compact representation

• So how do we find that plane without loosing too much of the variance in 
our data?  PCA

Example – 3D to 2D
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Principal component analysis (PCA)

• Technique for dimensionality reduction

• Invented by Karl Pearson (1901)

• Linear coordinate transformation

– converts a set of observations of possibly correlated variables

– into a set of values of linearly uncorrelated orthogonal variables 
called principal components

• Deterministic algorithm
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.
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https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c



PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance. 
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance. 

3. Covariance matrix: Calculate the covariance matrix
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Covariance (formal definition)

• Covariance x, x = var x

• Covariance x, 𝑦 = Covariance y, x

Variance(x)=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• Assume that x are random 
variable vectors 

• We have n vectors



Covariance example for 2D

• Positive
covariance 
between the 
two 
dimensions
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𝑥1

𝑦1

ҧ𝑥

ത𝑦

𝑦1 − ത𝑦<0

𝑥1 − ҧ𝑥<0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance example for 2D

• Negative
covariance 
between the 
two 
dimensions
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𝑦1

ത𝑦

𝑦1 − ത𝑦<0

𝑥1ҧ𝑥
𝑥1 − ҧ𝑥>0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance example for 2D

• No covariance 
between the 
two 
dimensions

2018-11-19 35

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0
𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance matrix
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𝐶𝑜𝑣 σ =

𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑚)

𝐶𝑜𝑣 σ =
1

𝑛
𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇; 𝑤ℎ𝑒𝑟𝑒 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑚

• Diagonal elements 
are variances, i.e. 
Cov(𝑥, 𝑥)=𝑣𝑎𝑟 𝑥
– n is the number 

of the vectors

– m is the 
dimension

• Covariance Matrix 
is symmetric 
– commutative 𝐶𝑜𝑣 σ =

𝑣𝑎𝑟(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑣𝑎𝑟(𝑥𝑚, 𝑥𝑚)



PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value. 

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance. 

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of 
the data variance on the new axis is the eigenvalue for that eigenvector. 
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value. 

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance. 

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of 
the data variance on the new axis is the eigenvalue for that eigenvector. 

5. Rank eigenvectors by eigenvalues 

6. Keep top k eigenvectors and stack them to form a feature vector

7. Transform data to PCs: 

– New data =      featurevectors(transposed) *   original data
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𝑦1
⋮
𝑦𝐾

=

𝑢11 ⋯ 𝑢𝐾1
⋮ ⋱ ⋮

𝑢1𝑛 ⋯ 𝑢𝐾𝑛

𝑇 𝑥1
⋮
𝑥𝑛

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c



Principal Component Analysis (PCA)
• The idea is to project the data onto a subspace which compresses most of 

the variance in as little dimensions as possible.

• Each new dimension is a principle component

• The principle components are ordered according to how much variance in 
the data they capture
– Example:

• PC1 – 55% of variance
• PC2 – 22% of variance
• PC3 – 10% of variance
• PC4 – 7% of variance
• PC5 – 2% of variance
• PC6 – 1% of variance
• PC7 - ….
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We have to choose how many PCs to use from the top



How many 
PCs to use?

• Calculate the proportion of 
variance for each feature

– 𝑝𝑟𝑜𝑝. 𝑜𝑓 𝑣𝑎𝑟. =
𝜆𝑖

σ𝑖=1
𝑛 𝜆𝑖

– 𝜆𝑖 are the eigen values

• Rich a predefined threshold

• Or find the elbow of the 
Scree plot

2018-11-19 40

Scree plot elbow

Scree plot

Proportion 
of variance

Principal components

Variance
Cumulative variance



t-Distributed Stochastic Neighbor Embedding

(t-SNE)
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Introduced by Laurens Van Der Maaten (2008)

• Generates a low dimensional representation of the high dimensional data 
set iteratively

• Aims to minimize the divergence between two distributions

– Pairwise similarity of the points in the higher-dimensional space

– Pairwise similarity of the points in the lower-dimensional space

• Output: original points mapped to a 2D or a 3D data space

– similar objects are modeled by nearby points and 

– dissimilar objects are modeled by distant points with high probability

• Unlike PCA, it is stochastic (probabilistic)
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t-SNE implementation I
Step 1: Generate the points in the low dimensional data set (2D or 3D)

• random initialization 

• First two or three components of PCA
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t-SNE implementation II

The similarity of datapoint
xj to datapoint xi means 
the conditional probability 
pji that xi would pick xj

as its neighbor. 

Student-t distribution is used to measure similarities 
between low-dimensional points in order to allow 
dissimilar objects to be modeled far apart in the map.

Step 2: Calculate the pair-wise similarities measures between data pairs 
(probability measure)

Exponential normalization of the 
Euclidian distances are needed due 
to the high dimensionality. 
(Curse of dimensionality)



Student distribution
• We know a few samples of a large normally distributed population 

𝑁(𝜇, 𝜎2) with expected mean and variance

• The mean value of these members are calculated normally

• The (Bessel corrected) variance of the samples is: 

• Normal variance function would underestimate the variance due to the 
limited number of samples
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Step 3: Define the cost function

• Similarity of data points in High dimension:

• Similarity of data points in Low dimension:

• Cost function (called Kullback-Leiber divergence between the two 
distributions):

• Large pji modeled by small qji Large penalty

• Large pji modeled by large qji Small penalty

• Local similarities are preserved
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t-SNE implementation III



t-SNE implementation IV
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Step 4: Minimize the cost function using gradient descent

• Gradient has a surprisingly simple form:

• Optimization can be done using momentum method



Physical analogy
• Our map points are all connected with springs in the low 

dimensional data map

• Stiffness of the springs depends on pj|i - qj|I

• Let the system evolve according to the laws of physics

– If two map points are far apart while the data points are close, 
they are attracted together

– If they are nearby while the data points are dissimilar, they are 
repelled.

• Illustration (live)

– https://www.oreilly.com/learning/an-illustrated-introduction-to-
the-t-sne-algorithm
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Comparison of PCA and t-SNE on MNIST database
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PCA T-SNE



Autoencoder
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Autoencoder
• Neural network used for efficient data coding

• Uses the same vector for the input and the output
– No labelled data set is 

needed 

– Unsupervised learning

• Two parts
– Encoder: reduces data 

dimension

– Decoder: reconstructs 
data

– Middle layer: code
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𝑥2
′

𝑥3
′

𝑥5
′

Operation
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x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

𝑥1
′

Layer 3

a1

a2

a3

net(x)=x’

𝑥1
′

𝑥4
′

𝑥6
′

• The network is 
trained with the 
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy 

• After network is 
trained, remove 
decoder part



Operation

• The network is 
trained with the 
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy 

• After network is 
trained, remove 
decoder part
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x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

a1

a2

a3

New compressed

representation for 

input. 

𝑎1
𝑎2
𝑎3



Example

• Coding MNIST data base
• 28x28 (784 dimensions)      2x5   (10 dimensions)    
• 78 times compression
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Autoencoder vs PCA

• Undercomplete autoencoder with 

– one hidden layer 

– linear output function 

– MSE loss 

• Projects data on subspace of first K principal 
components
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Undercomplete: width of 
hidden layer is smaller than 
width input/output layer



Denoising
• Trick:

– Adding noise to the input

– The desired output is the original input

2018-11-19 56



MNIST database coding to two 
dimension
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Two neurons in 
the coding hidden 
layer



Autoencoder + t-SNE
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Two neurons in 
the coding hidden 
layer


