
Neural Networks

(P-ITEEA-0011)

Unsupervised learning techniques

Akos Zarandy

Lecture 8

November 12, 2018

Contents

• Resolution controlling
• Atrous convolutions, sub-pixel image combination

• Supervised vs unsupervised learning

• Unsupervised learning techniques
• Curse of dimensionality

• Principal component analysis (PCA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Autoencoder

2018-11-19. 2

Atrous convolution
• How it works?

– Blows up the kernel
– Filling up the holes with zeros

• Atrous means very dark (like
the wholes between the
values)

• Properties
– Not doing downsampling
– Not increasing computational

load
– But reaches larger

neighborhood
– Combines information from

larger neighborhood

2018-11-19 3

kernel

rate=1 rate=2 rate=3

Normal
convolution

Atrous (dilated)
convolution

Going deep

2018-11-19 4

Atrous convolution goes deeper without further reducing resolution

Normal convolution goes deeper with reducing resolution

Filter size considerations

• Small field-of-view → accurate localization

• Large field-of-view → context assimilation

• Effective filter size increases (enlarge the field-of-view of filter)

𝑛𝑜: 𝑘 × 𝑘 → 𝑛𝑎: 𝑘 + 𝑘 − 1 𝑟 − 1 × 𝑘 + 𝑘 − 1 𝑟 − 1

𝑛𝑜 : original kernel size

𝑛𝑎 : original kernel size

r: rate

• However, we take into account only the non-zero filter values:
• Number of filter parameters is the same

• Number of operations per position is the same

2018-11-19. 5

6Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected
CRFs." arXiv preprint arXiv:1606.00915 (2016).

Standard
convolution

Atrous
convolution

Padded
filter

Original filter

Visualizing atrous convolution

https://arxiv.org/pdf/1606.00915v1.pdf

Semantic segmentation
CNN arrangements

2018-11-19

Fully conv-net

Fully conv-net with skip

Conv-net with
Multi-scale
atrous
convolutions

• How to solve reduced resolution?
• Do not downsample !!!

• Convolution on large images ⥤ Small FOV Enlarge kernel
• Size O(n2) more parameters ⥤ getting close to fully
• Connected layer, slow training, overfitting

• Atrous Convolution.
• Large FOV with little parameters  Kill two birds with one

stone!

Sub-pixel upsampling

2018-11-19 8

Sub-pixel upsampling

2018-11-19 9

• Technique for combining multiple low resolution layers to a high resolution
layer

• Avoids introducing zeros pixels or duplicated pixels
• Avoids checkerboard pattern with transpose convolution

2x2 superpixel
to receive one
pixel from each
Feature map

3x3 superpixel

Sub-pixel upsampling

2018-11-19 10

• Each feature map is holding information for a sub-pixel position
• During the training, each feature map learns how to calculate the

subpixels

Unsupervised learning

2018-11-19 11

Typical Machine Learning Types

No two machine learning tasks are identical, but still there are common

prototypes:

• Supervised Learning
– Learning from labeled examples (for which the answer is known)

• Unsupervised Learning
– Learning from unlabeled examples (for which the answer is unknown)

• Semi-supervised Learning
– Learning from both labeled and unlabeled examples

• Reinforcement Learning
– Learning by trial and feedback, like the “child learning” example

2018-11-19 12

Supervised vs Unsupervised learning

• Supervised learning

– We have prior knowledge
of the desired output
• Always have data set with

ground truth (like image
data sets with labels)

– Typical tasks
• Classification

• Regression

2018-11-19

• Unsupervised learning
– No prior knowledge of

the desired output
• Received radio signals from

deep space

– Typical tasks
• Clustering

• Representation learning

• Density estimation

We wish to learn the inherent
structure of (patterns in) our data.

13

Use cases for unsupervised learning

• Exploratory analysis of a large data set

– Clustering by data similarity

– Enables verifying individual hypothesizes after analyzing the clustered data

• Dimensionality reduction

– Represents data with less columns

– Allows to present data with fewer features

– Selects the relevant features

– Enables less power consuming data processing, and/or human analysis

2018-11-19 14

Curse of dimensionality

2018-11-19 15

• What is it?
– A name for various problems that arise when analyzing data in high

dimensional space.
– Dimensions = independent features in ML

• Input vector size (number of pixels in an imaga)

– Occurs when d (# dimensions) is large in relation to n (number of
samples).

• Real life examples:
– Genomics

• We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.

So what is this curse?

• Sparse data:
– When the dimensionality d increases, the volume of the space increases

so fast that the available data becomes sparse, i.e. a few points in a large
space

– Many features are not balanced, or are ‘rarely occur’ – sparse features

• Noisy data: More features can lead to increased noise  it is harder to find
the true signal

• Less clusters: Neighborhoods with fixed k points are less concentrated as d
increases.

• Complex features: High dimensional functions tend to have more complex
features than low-dimensional functions, and hence harder to estimate

2018-11-19 16

Data becomes sparse as dimensions increase
• A sample that maps 10% of the 1x1 squares in 2D represent only 1%

of the 1x1x1 cubes in 3D

• There is an exponential increase in the search-space

2018-11-19 17

Sparse example
• Suppose we want to discriminate between

samples from two categories

• This one feature is not discriminative. We cannot
classify well, thus we decide to add a second feature.

• To maintain the sample density of 9 samples per unit length (as above)
how many samples do we need?

• We need 81 samples to maintain the same density as in 1D

• In d dimension we need 9d samples!

– Otherwise, the data becomes more sparse
2018-11-19 18

72 new samples needed

Curse of dim - Running complexity

• Many data points (labeled measurements) are needed

• Complexity (running time) increase with dimension d

• A lot of methods have at least O(n*d2) complexity, where n is
the number of samples

• As d becomes large, this complexity becomes very costly.
– Compute = $

2018-11-19 19

Curse of dim - Some mathematical
(weird) effects

• Ratio between the volume of a sphere and a cube for d=3:

• When d tends to infinity the volume of the sphere (this ratio) tends to zero

• Most of the data is in the corner of the cube

– Thus, Euclidian distance becomes meaningless, most two points are “far” from
each others

• Very problematic for methods such as k-NN classification or k-means
clustering because most of the neighbors are equidistant

2018-11-19 20

(
𝟒
𝟑)𝝅𝒓

𝟑

(𝟐𝒓)𝟑
≈
𝟒𝒓𝟑

𝟖𝒓𝟑
≈ 𝟎. 𝟓

d 3 5 10 20 30 50

ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28

The nearest neighbor problem in a sphere

• Assume randomly distributed points in a sphere with a unit diameter

• The median of the nearest neighbors is l

• As dimension tends to infinity

– The median of the nearest neighbors
converges to 1

2018-11-19 21

“The Curse of Dimensionality” by Raúl Rojas
https://www.inf.fu-berlin.de/inst/ag-
ki/rojas_home/documents/tutorials/dimensionality.pdf

l

How to calculate dimensionality?

x1 x2 x3 x4

d1 1 2 1 1
d2 2 4 0.5 1
d3 3 6 17 1

• How many dimensions does the data intrinsically have here? (How many
independent coordinates?)

– Two!
• x1 = ½ * x2 (no additional information, not independent)
• x4 is constant (carries no information at all!)

2018-11-19 22

How to avoid the curse?

• Reduce dimensions
– Feature selection - Choose only a subset of features
– Use algorithms that transform the data into a lower dimensional space (example – PCA, t-SNE)

*Both methods often result in information loss

• Less is More
– In many cases the information that is lost by discarding variables is made up for by a more

accurate mapping/sampling in the lower-dimensional space

2018-11-19 23

Classifier
performance

of variables

Principal component analysis

(PCA)

2018-11-19 24

Dimensionality reduction goals

• Improve ML performance

• Compress data

• Visualize data (you can’t visualize >3 dimensions)

• Generate new complex features
– Loosing the meaning of a feature

– Combining temperature, sound and current to one feature will be meaningless for
human

2018-11-19 25

Example – reducing data from 2d to 1d

• X1 and x2 are pretty redundant. We
can reduce them to 1d along the
green line

• This is done by projecting the points
to the line (some information is lost,
but not much)

2018-11-19 26

• Despite having 3D data most of it lies close to a plane

• If we were to project the data onto a plane we would have a more
compact representation

• So how do we find that plane without loosing too much of the variance in
our data?  PCA

Example – 3D to 2D

2018-11-19 27

Principal component analysis (PCA)

• Technique for dimensionality reduction

• Invented by Karl Pearson (1901)

• Linear coordinate transformation

– converts a set of observations of possibly correlated variables

– into a set of values of linearly uncorrelated orthogonal variables
called principal components

• Deterministic algorithm

2018-11-19 28

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2018-11-19 29
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

2018-11-19 30
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

3. Covariance matrix: Calculate the covariance matrix

2018-11-19 31
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

Covariance (formal definition)

• Covariance x, x = var x

• Covariance x, 𝑦 = Covariance y, x

Variance(x)=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• Assume that x are random
variable vectors

• We have n vectors

Covariance example for 2D

• Positive
covariance
between the
two
dimensions

2018-11-19 33

𝑥1

𝑦1

ҧ𝑥

ത𝑦

𝑦1 − ത𝑦<0

𝑥1 − ҧ𝑥<0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance example for 2D

• Negative
covariance
between the
two
dimensions

2018-11-19 34

𝑦1

ത𝑦

𝑦1 − ത𝑦<0

𝑥1ҧ𝑥
𝑥1 − ҧ𝑥>0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance example for 2D

• No covariance
between the
two
dimensions

2018-11-19 35

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0
𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance matrix

2018-11-19 36

𝐶𝑜𝑣 σ =

𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑚)

𝐶𝑜𝑣 σ =
1

𝑛
𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇; 𝑤ℎ𝑒𝑟𝑒 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑚

• Diagonal elements
are variances, i.e.
Cov(𝑥, 𝑥)=𝑣𝑎𝑟 𝑥
– n is the number

of the vectors

– m is the
dimension

• Covariance Matrix
is symmetric
– commutative 𝐶𝑜𝑣 σ =

𝑣𝑎𝑟(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑣𝑎𝑟(𝑥𝑚, 𝑥𝑚)

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value.

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

2018-11-19 37
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value.

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

5. Rank eigenvectors by eigenvalues

6. Keep top k eigenvectors and stack them to form a feature vector

7. Transform data to PCs:

– New data = featurevectors(transposed) * original data

2018-11-19 38

𝑦1
⋮
𝑦𝐾

=

𝑢11 ⋯ 𝑢𝐾1
⋮ ⋱ ⋮

𝑢1𝑛 ⋯ 𝑢𝐾𝑛

𝑇 𝑥1
⋮
𝑥𝑛

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

Principal Component Analysis (PCA)
• The idea is to project the data onto a subspace which compresses most of

the variance in as little dimensions as possible.

• Each new dimension is a principle component

• The principle components are ordered according to how much variance in
the data they capture
– Example:

• PC1 – 55% of variance
• PC2 – 22% of variance
• PC3 – 10% of variance
• PC4 – 7% of variance
• PC5 – 2% of variance
• PC6 – 1% of variance
• PC7 - ….

2018-11-19 39

We have to choose how many PCs to use from the top

How many
PCs to use?

• Calculate the proportion of
variance for each feature

– 𝑝𝑟𝑜𝑝. 𝑜𝑓 𝑣𝑎𝑟. =
𝜆𝑖

σ𝑖=1
𝑛 𝜆𝑖

– 𝜆𝑖 are the eigen values

• Rich a predefined threshold

• Or find the elbow of the
Scree plot

2018-11-19 40

Scree plot elbow

Scree plot

Proportion
of variance

Principal components

Variance
Cumulative variance

t-Distributed Stochastic Neighbor Embedding

(t-SNE)

2018-11-19 41

t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Introduced by Laurens Van Der Maaten (2008)

• Generates a low dimensional representation of the high dimensional data
set iteratively

• Aims to minimize the divergence between two distributions

– Pairwise similarity of the points in the higher-dimensional space

– Pairwise similarity of the points in the lower-dimensional space

• Output: original points mapped to a 2D or a 3D data space

– similar objects are modeled by nearby points and

– dissimilar objects are modeled by distant points with high probability

• Unlike PCA, it is stochastic (probabilistic)

2018-11-19 42

t-SNE implementation I
Step 1: Generate the points in the low dimensional data set (2D or 3D)

• random initialization

• First two or three components of PCA

2018-11-19 43

t-SNE implementation II

The similarity of datapoint
xj to datapoint xi means
the conditional probability
pji that xi would pick xj

as its neighbor.

Student-t distribution is used to measure similarities
between low-dimensional points in order to allow
dissimilar objects to be modeled far apart in the map.

Step 2: Calculate the pair-wise similarities measures between data pairs
(probability measure)

Exponential normalization of the
Euclidian distances are needed due
to the high dimensionality.
(Curse of dimensionality)

Student distribution
• We know a few samples of a large normally distributed population

𝑁(𝜇, 𝜎2) with expected mean and variance

• The mean value of these members are calculated normally

• The (Bessel corrected) variance of the samples is:

• Normal variance function would underestimate the variance due to the
limited number of samples

2018-11-19 45

Step 3: Define the cost function

• Similarity of data points in High dimension:

• Similarity of data points in Low dimension:

• Cost function (called Kullback-Leiber divergence between the two
distributions):

• Large pji modeled by small qji Large penalty

• Large pji modeled by large qji Small penalty

• Local similarities are preserved

2018-11-19 46

t-SNE implementation III

t-SNE implementation IV

2018-11-19 47

Step 4: Minimize the cost function using gradient descent

• Gradient has a surprisingly simple form:

• Optimization can be done using momentum method

Physical analogy
• Our map points are all connected with springs in the low

dimensional data map

• Stiffness of the springs depends on pj|i - qj|I

• Let the system evolve according to the laws of physics

– If two map points are far apart while the data points are close,
they are attracted together

– If they are nearby while the data points are dissimilar, they are
repelled.

• Illustration (live)

– https://www.oreilly.com/learning/an-illustrated-introduction-to-
the-t-sne-algorithm

2018-11-19 48

Comparison of PCA and t-SNE on MNIST database

2018-11-19 49

PCA T-SNE

Autoencoder

2018-11-19 50

Autoencoder
• Neural network used for efficient data coding

• Uses the same vector for the input and the output
– No labelled data set is

needed

– Unsupervised learning

• Two parts
– Encoder: reduces data

dimension

– Decoder: reconstructs
data

– Middle layer: code

2018-11-19 51

𝑥2
′

𝑥3
′

𝑥5
′

Operation

2018-11-19 52

x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

𝑥1
′

Layer 3

a1

a2

a3

net(x)=x’

𝑥1
′

𝑥4
′

𝑥6
′

• The network is
trained with the
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy

• After network is
trained, remove
decoder part

Operation

• The network is
trained with the
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy

• After network is
trained, remove
decoder part

2018-11-19

x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

a1

a2

a3

New compressed

representation for

input.

𝑎1
𝑎2
𝑎3

Example

• Coding MNIST data base
• 28x28 (784 dimensions)  2x5 (10 dimensions)
• 78 times compression
2018-11-19 54

Autoencoder vs PCA

• Undercomplete autoencoder with

– one hidden layer

– linear output function

– MSE loss

• Projects data on subspace of first K principal
components

2018-11-19 55

Undercomplete: width of
hidden layer is smaller than
width input/output layer

Denoising
• Trick:

– Adding noise to the input

– The desired output is the original input

2018-11-19 56

MNIST database coding to two
dimension

2018-11-19 57

Two neurons in
the coding hidden
layer

Autoencoder + t-SNE

2018-11-19 58

Two neurons in
the coding hidden
layer

