

### **Neural Networks**

## **Unsupervised learning techniques**

## (P-ITEEA-0011)

Akos Zarandy Lecture 8 November 12, 2018

### Contents

- Resolution controlling
  - Atrous convolutions, sub-pixel image combination
- Supervised vs unsupervised learning
- Unsupervised learning techniques
  - Curse of dimensionality
  - Principal component analysis (PCA)
  - t-Distributed Stochastic Neighbor Embedding (t-SNE)
  - Autoencoder

## Atrous convolution

- How it works?
  - Blows up the kernel
  - Filling up the holes with zeros
    - Atrous means very dark (like the wholes between the values)
- Properties
  - Not doing downsampling
  - Not increasing computational load
  - But reaches larger neighborhood
  - Combines information from larger neighborhood



kernel

rate=2





### Going deep



Normal convolution goes deeper with reducing resolution



Atrous convolution goes deeper without further reducing resolution

## Filter size considerations



- <u>Small</u> field-of-view → accurate <u>localization</u>
- Large field-of-view → context assimilation
- Effective filter size increases (enlarge the field-of-view of filter)

 $n_o: k \times k \rightarrow n_a: (k + (k - 1)(r - 1)) \times (k + (k - 1)(r - 1))$   $n_o:$  original kernel size  $n_a:$  original kernel size r: rate

- However, we take into account only the non-zero filter values:
  - Number of filter parameters is the same
  - Number of operations per position is the same

#### Visualizing atrous convolution



Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs." arXiv preprint arXiv:1606.00915 (2016).



**Standard** 



#### Semantic segmentation CNN arrangements





- How to solve reduced resolution?
  - Do not downsample !!!
    - Convolution on large images ⇒ Small FOV Enlarge kernel
    - Size  $O(n^2)$  more parameters  $\Rightarrow$  getting close to fully
    - Connected layer, slow training, overfitting
- Atrous Convolution.
  - Large FOV with little parameters → Kill two birds with one stone!



## Sub-pixel upsampling

## Sub-pixel upsampling

Technique for combining multiple low resolution layers to a high resolution layer

3x3 superpixel

- Avoids introducing zeros pixels or duplicated pixels
- Avoids checkerboard pattern with transpose convolution



## Sub-pixel upsampling



- Each feature map is holding information for a sub-pixel position
- During the training, each feature map learns how to calculate the subpixels



## **Unsupervised** learning

## **Typical Machine Learning Types**



No two machine learning tasks are identical, but still there are common prototypes:

- Supervised Learning
  - Learning from labeled examples (for which the answer is known)
- Unsupervised Learning
  - Learning from unlabeled examples (for which the answer is unknown)
- Semi-supervised Learning
  - Learning from both labeled and unlabeled examples
- Reinforcement Learning
  - Learning by trial and feedback, like the "child learning" example



## Supervised vs Unsupervised learning



- Supervised learning
  - We have prior knowledge of the desired output
    - Always have data set with ground truth (like image data sets with labels)
  - Typical tasks
    - Classification
    - Regression

- Unsupervised learning
  - No prior knowledge of the desired output
    - Received radio signals from deep space
  - Typical tasks
    - Clustering
    - Representation learning
    - Density estimation

We wish to learn the inherent structure of (patterns in) our data.

# Use cases for unsupervised learning



- Exploratory analysis of a large data set
  - Clustering by data similarity
  - Enables verifying individual hypothesizes after analyzing the clustered data
- Dimensionality reduction
  - Represents data with less columns
  - Allows to present data with fewer features
  - Selects the relevant features
  - Enables less power consuming data processing, and/or human analysis

# **Curse of dimensionality**



- What is it?
  - A name for various problems that arise when analyzing data in high dimensional space.
  - Dimensions = independent features in ML
    - Input vector size (number of pixels in an imaga)
  - Occurs when d (# dimensions) is large in relation to n (number of samples).
- Real life examples:
  - Genomics
    - We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.

# So what is this curse?



- Sparse data:
  - When the dimensionality d increases, the volume of the space increases so fast that the available data becomes **sparse**, **i.e. a few points in a large space**
  - Many features are not balanced, or are 'rarely occur' sparse features
- Noisy data: More features can lead to increased noise → it is harder to find the true signal
- Less clusters: Neighborhoods with fixed k points are less concentrated as d increases.
- **Complex features**: High dimensional functions tend to have more complex features than low-dimensional functions, and hence harder to estimate

## Data becomes sparse as dimensions increase



• A sample that maps 10% of the 1x1 squares in 2D represent only 1% of the 1x1x1 cubes in 3D



• There is an exponential increase in the search-space

## Sparse example

• Suppose we want to discriminate between samples from two categories



- This one feature is not discriminative. We cannot 72 new samples needed classify well, thus we decide to add a second feature.
- To maintain the sample density of 9 samples per unit length (as above) how many samples do we need?
- We need 81 samples to maintain the same density as in 1D
- In d dimension we need **9**<sup>d</sup> samples!
  - Otherwise, the data becomes more sparse

# Curse of dim - Running complexity



- Many data points (labeled measurements) are needed
- Complexity (running time) increase with dimension **d**
- A lot of methods have at least O(n\*d<sup>2</sup>) complexity, where n is the number of samples
- As *d* becomes large, this complexity becomes very costly.
   Compute = \$



# Curse of dim - Some mathematical (weird) effects



- Ratio between the volume of a sphere and a cube for d=3:  $\frac{(\frac{4}{3})\pi r^3}{(2r)^3} \approx \frac{4r^3}{8r^3} \approx 0.5$
- When **d** tends to infinity the volume of the sphere (this ratio) tends to zero

| d     | 3    | 5    | 10     | 20      | 30      | 50      |
|-------|------|------|--------|---------|---------|---------|
| ratio | 0.52 | 0.16 | 0.0025 | 2.5E-08 | 2.0E-14 | 1.5E-28 |

- Most of the data is in the corner of the cube
  - Thus, Euclidian distance becomes meaningless, most two points are "far" from each others
- Very problematic for methods such as k-NN classification or k-means clustering because most of the neighbors are equidistant

# The nearest neighbor problem in a sphere



- Assume randomly distributed points in a sphere with a unit diameter
- The median of the nearest neighbors is *l*
- As dimension tends to infinity
  - The median of the nearest neighbors converges to 1

"The Curse of Dimensionality" by Raúl Rojas https://www.inf.fu-berlin.de/inst/agki/rojas\_home/documents/tutorials/dimensionality.pdf



2018-11-19

## How to calculate dimensionality?





- How many dimensions does the data intrinsically have here? (How many independent coordinates?)
  - Two!
    - x1 = ½ \* x2 (no additional information, not independent)
    - x4 is constant (carries no information at all!)

## How to avoid the curse?



- Reduce dimensions
  - <u>Feature selection</u> Choose only a subset of features
  - Use algorithms that transform the data into a lower dimensional space (example PCA, t-SNE)
     \*Both methods often result in information loss
- Less is More
  - In many cases the information that is lost by discarding variables is made up for by a more accurate mapping/sampling in the lower-dimensional space





### Principal component analysis

(PCA)



# **Dimensionality reduction goals**

- Improve ML performance
- Compress data
- Visualize data (you can't visualize >3 dimensions)
- Generate new complex features
  - Loosing the meaning of a feature
  - Combining temperature, sound and current to one feature will be meaningless for human

### Example – reducing data from 2d to 1d





- X1 and x2 are pretty redundant. We can reduce them to 1d along the green line
- This is done by projecting the points to the line (some information is lost, but not much)

## Example – 3D to 2D



• Despite having 3D data most of it lies close to a plane



- If we were to project the data onto a plane we would have a more compact representation
- So how do we find that plane without loosing too much of the variance in our data? → PCA

# Principal component analysis (PCA)



- Technique for dimensionality reduction
- Invented by Karl Pearson (1901)
- Linear coordinate transformation
  - converts a set of observations of possibly correlated variables
  - into a set of values of linearly uncorrelated orthogonal variables called principal components
- Deterministic algorithm

1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the average of each dimension zero.



- 1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the average of each dimension zero.
- 2. Standardization (optional): Do it, if you want to have each of your features the same variance.



2018-11-19 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

- 1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the average of each dimension zero.
- 2. Standardization (optional): Do it, if you want to have each of your features the same variance.
- 3. Covariance matrix: Calculate the covariance matrix



# Covariance (formal definition)

- Assume that **x** are random variable vectors
- We have *n* vectors

Variance(x) = 
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
  
=  $\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})$ 

Covariance(x, y) = 
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Covariance(x, x) = var(x)
- Covariance(x, y) = Covariance(y, x)





## Covariance example for 2D

Covariance(x, y) = 
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

 Positive covariance between the two dimensions





## Covariance example for 2D

Covariance(x, y) =  $\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})^\circ$ 

 Negative covariance between the two dimensions





## Covariance example for 2D

Covariance(x, y) = 
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

 No covariance between the two dimensions



# **Covariance matrix**

- Diagonal elements are variances, i.e. Co Cov(x, x)=var(x)
  - *n* is the number of the vectors
  - *m* is the dimension

$$pv(\Sigma) = \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) & \cdots & cov(x_1, x_m) \\ cov(x_2, x_1) & cov(x_2, x_2) & \cdots & cov(x_2, x_m) \\ \vdots & \vdots & \vdots & \vdots \\ cov(x_m, x_1) & cov(x_m, x_2) & \cdots & cov(x_m, x_m) \end{bmatrix}$$

$$Fov\left(\Sigma\right) = \frac{1}{n}(X - \bar{X})(X - \bar{X})^{T}; where \ X = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix}$$

- Covariance Matrix is symmetric
  - commutative

$$\begin{bmatrix}
 x_m
 \end{bmatrix}$$

$$\text{Lov}(\Sigma) =
 \begin{bmatrix}
 var(x_1, x_1) & cov(x_1, x_2) & \cdots & cov(x_1, x_m) \\
 cov(x_2, x_1) & var(x_2, x_2) & \cdots & cov(x_2, x_m) \\
 \vdots & \vdots & \vdots & \vdots \\
 cov(x_m, x_1) & cov(x_m, x_2) & \cdots & var(x_m, x_m) \\
 36
 \end{bmatrix}$$

1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the average of each dimension zero.



- 2. Standardization (optional): Do it, if you want to have each of your features the same variance.
- 3. Covariance matrix: Calculate the covariance matrix
- 4. Eigenvectors and eigenvalues of the covariance matrix
  - Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of the data variance on the new axis is the eigenvalue for that eigenvector.



2018-11-19 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the average of each dimension zero.



- 2. Standardization (optional): Do it, if you want to have each of your features the same variance.
- 3. Covariance matrix: Calculate the covariance matrix
- 4. Eigenvectors and eigenvalues of the covariance matrix
  - Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of the data variance on the new axis is the eigenvalue for that eigenvector.
- 5. Rank eigenvectors by eigenvalues
- 6. Keep top k eigenvectors and stack them to form a feature vector
- 7. Transform data to PCs:
  - New data = featurevectors(transposed) \* original data

$$\begin{pmatrix} y_1 \\ \vdots \\ y_K \end{pmatrix} = \begin{pmatrix} u11 & \cdots & uK1 \\ \vdots & \ddots & \vdots \\ u1n & \cdots & uKn \end{pmatrix}^T \begin{pmatrix} x1 \\ \vdots \\ xn \end{pmatrix}$$

2018-11-19

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

# Principal Component Analysis (PCA)



- The idea is to project the data onto a subspace which compresses most of the variance in as little dimensions as possible.
- Each new dimension is a principle component
- The principle components are ordered according to how much variance in the data they capture
  - Example:
    - PC1 55% of variance
    - PC2 22% of variance
    - PC3 10% of variance
    - PC4 7% of variance
    - PC5 2% of variance
    - PC6 1% of variance
    - PC7 ....



#### We have to choose how many PCs to use from the top

2018-11-19

## How many PCs to use?

- Calculate the proportion of • variance for each feature
  - prop. of var. =  $\frac{\lambda_i}{\sum_{i=1}^n \lambda_i}$
  - $-\lambda_i$  are the eigen values
- Rich a predefined threshold •
- Or find the elbow of the Scree plot





## t-Distributed Stochastic Neighbor Embedding

## (t-SNE)

### t-Distributed Stochastic Neighbor Embedding (t-SNE)



- Introduced by Laurens Van Der Maaten (2008)
- Generates a low dimensional representation of the high dimensional data set iteratively
- Aims to minimize the divergence between two distributions
  - Pairwise similarity of the points in the higher-dimensional space
  - Pairwise similarity of the points in the lower-dimensional space
- Output: original points mapped to a 2D or a 3D data space
  - similar objects are modeled by nearby points and
  - dissimilar objects are modeled by distant points with high probability
- Unlike PCA, it is stochastic (probabilistic)

## t-SNE implementation I

Step 1: Generate the points in the low dimensional data set (2D or 3D)

- random initialization
- First two or three components of PCA



## t-SNE implementation II

Step 2: Calculate the pair-wise similarities measures between data pairs (probability measure)

High Dim



Low Dim



 $q_{ij} = \frac{(1+||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1+||y_k - y_l||^2)^{-1}}$ 

The similarity of datapoint  $x_j$  to datapoint  $x_i$  means the conditional probability  $p_{ji}$  that  $x_i$  would pick  $x_j$ as its neighbor.

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} \exp(-||x_l - x_k||^2/2\sigma^2)}$$

Exponential normalization of the Euclidian distances are needed due to the high dimensionality. (Curse of dimensionality)

Student-t distribution is used to measure similarities between low-dimensional points in order to allow dissimilar objects to be modeled far apart in the map.





## **Student distribution**

- We know a few samples of a large normally distributed population  $N(\mu, \sigma^2)$  with expected mean and variance
- The mean value of these members are calculated normally

$$ar{X} = rac{1}{n}\sum_{i=1}^n X_i$$

• The (Bessel corrected) variance of the samples is:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

• Normal variance function would underestimate the variance due to the limited number of samples

## t-SNE implementation III

#### Step 3: Define the cost function

- Similarity of data points in High dimension:
- Similarity of data points in Low dimension:

$$p_{ij} = \frac{exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} exp(-||x_l - x_k||^2/2\sigma^2)}$$

$$q_{ij} = rac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k
eq l} (1+||y_k-y_l||^2)^{-1}}$$

- Cost function (called Kullback-Leiber divergence between the two distributions):  $C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$ 
  - Large  $p_{ji}$  modeled by small  $q_{ji} \rightarrow \underline{\text{Large penalty}}$
  - Large  $p_{ji}$  modeled by large  $q_{ji} \rightarrow \underline{Small \ penalty}$
  - Local similarities are preserved



## t-SNE implementation IV

**Step 4**: *Minimize the cost function using gradient descent* 

• Gradient has a surprisingly simple form:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij})(1 + ||y_i - y_j||^2)^{-1}(y_i - y_j)$$

• Optimization can be done using momentum method



# Physical analogy

- Our map points are all connected with springs in the low dimensional data map
- Stiffness of the springs depends on  $p_{j/i}$   $q_{j/I}$
- Let the system evolve according to the laws of physics
  - If two map points are far apart while the data points are close, they are attracted together
  - If they are nearby while the data points are dissimilar, they are repelled.
- Illustration (live)
  - https://www.oreilly.com/learning/an-illustrated-introduction-tothe-t-sne-algorithm



## Comparison of PCA and t-SNE on MNIST database







### Autoencoder

## Autoencoder

- Neural network used for efficient data coding
- Uses the same vector for the input and the output
  - No labelled data set is needed
  - Unsupervised learning
- Two parts
  - Encoder: reduces data dimension
  - Decoder: reconstructs data
  - Middle layer: code









2018-11-19

# Operation

- The network is trained with the same inputoutput pairs
- Loss function:
  - MSE
  - Cross Entropy
- After network is trained, remove decoder part



2018-11-19

# Operation

- The network is trained with the same inputoutput pairs
- Loss function:
  - MSE
  - Cross Entropy
- After network is trained, remove decoder part



2018-11-19

Layer 1

Layer 2



- Coding MNIST data base
- 28x28 (784 dimensions)  $\rightarrow$  2x5 (10 dimensions)
- 78 times compression

# Autoencoder vs PCA



- Undercomplete autoencoder with
  - one hidden layer
  - linear output function
  - MSE loss

Undercomplete: width of hidden layer is smaller than width input/output layer

 Projects data on subspace of first K principal components

## Denoising

- Trick:
  - Adding noise to the input —
  - The desired output is the original input









label = 5

#### Autoencoder + t-SNE



